MATH 512 HOMEWORK 5

Due Friday, May 3.

Problems 1-3 go over the following theorem of Laver:

Theorem 0.1. Suppose that in V, κ is supercompact. Then there is a generic extension, in which κ remains supercompact and for any κ -directed closed forcing \mathbb{Q} , forcing with \mathbb{Q} preserves the supercompactness of κ . Such a cardinal is said to be indestructibly supercompact.

Suppose $V \models \kappa$ is supercompact. Let $f : \kappa \to V_{\kappa}$ be a Laver function. Define $\mathbb{P} = \langle \mathbb{P}_{\alpha} * \dot{\mathbb{Q}}_{\alpha} \mid \alpha < \kappa \rangle$ to be an iteration of length κ with Easton support (i.e. direct limits at regular α 's and inverse limits at singular α 's.) such that for each α , we define $\dot{\mathbb{Q}}_{\alpha}$ as follows:

- (1) $f(\alpha) = (\lambda, \dot{\mathbb{Q}})$, where $\lambda \in Ord$, $\dot{\mathbb{Q}}$ is \mathbb{P}_{α} -name for an α -directed closed poset, and for all $\beta < \alpha$, if $f(\beta) = (a_0, a_1)$ where $a_0 \in Ord$, then $a_0 < \alpha$. In this case set $\dot{\mathbb{Q}}_{\alpha}$.
- (2) Otherwise, set \mathbb{Q}_{α} to be a name for the trivial poset.

Then \mathbb{P} is κ -c.c. with cardinality κ . So, it has no effect on cardinals and cofinalities above κ . Let G be \mathbb{P} -generic over V. Suppose that in V[G], \mathbb{Q} is a κ -directed closed notion of forcing and $\lambda \geq \kappa$ be such that $\dot{\mathbb{Q}} \in H_{\lambda}$, where $\dot{\mathbb{Q}}$ is a \mathbb{P} -name in V for the above poset. The problems below give the argument that after forcing with \mathbb{Q} , κ is λ -supercompact.

Problem 1. Let H be \mathbb{Q} -generic over V[G] and let $\mu = 2^{2^{\lambda}}$. Show that there is an elementary embedding $j : V[G] \to M[G * H * K]$, for some generic filter K, such that j extends a μ -supercompact embedding $j_0 : V \to M$.

Problem 2. Show that we can lift j from the above problem to an embedding $j^*: V[G * H] \to M[G * H * K * K']$ for some generic filer K'. Here j^* will be defined in V[G * H * K * K'].

Problem 3. Use j^* from the above problem to define a normal measure U on $\mathbb{P}_{\kappa}(\lambda)$, such that $U \in V[G]$. Conclude that in V[G], κ is λ -supercompact.

Problem 4.

- (1) Show that every c.c.c forcing has the ω_1 -covering property.
- (2) Let $\gamma \geq \omega_1$. Show that $Add(\omega, 1) * Col(\omega_1, \gamma)$ has the ω_1 -covering property.

Problem 5. Suppose \mathbb{P} has the ω_1 -covering property and the ω_1 -approximation property. Suppose also $\lambda \geq \omega_1$ and $\mathbb{1}_{\mathbb{P}} \Vdash \dot{f} : \omega_1 \to \mathcal{P}_{\omega_1}(\lambda)$ is continuous and cofinal. Let $M \in \mathcal{P}_{\omega_2}(H_{\theta})$ be a substructure with $\dot{f}, \lambda, \mathbb{P} \in M$, and $G \subset \mathbb{P}$ be M-generic and $f = \dot{f}_G$.

MATH 512 HOMEWORK 5

- Show that f: ω₁ → P_{ω1}(M ∩ λ) is continuous and cofinal.
 Show that for every x ⊂ M, |x| < ω₁, there is y ∈ M such that |y| < ω₁ and x ⊂ y.

 $\mathbf{2}$